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Abstract—While cloud-based deep learning benefits for high-
accuracy inference, it leads to potential privacy risks when
exposing sensitive data to untrusted servers. In this paper, we
work on exploring the feasibility of steganography in preserving
inference privacy. Specifically, we devise GHOST and GHOST+,
two private inference solutions employing steganography to make
sensitive images invisible in the inference phase. Motivated by the
fact that deep neural networks (DNNs) are inherently vulnerable
to adversarial attacks, our main idea is turning this vulnerability
into the weapon for data privacy, enabling the DNN to misclassify
a stego image into the class of the sensitive image hidden in it.
The main difference is that GHOST retrains the DNN into a
poisoned network to learn the hidden features of sensitive images,
but GHOST+ leverages a generative adversarial network (GAN)
to produce adversarial perturbations without altering the DNN.
For enhanced privacy and a better computation-communication
trade-off, both solutions adopt the edge-cloud collaborative fram-
ework. Compared with the previous solutions, this is the first
work that successfully integrates steganography and the nature of
DNNs to achieve private inference while ensuring high accuracy.
Extensive experiments validate that steganography has excellent
ability in accuracy-aware privacy protection of deep learning.
Index Terms—Deep learning, steganography, adversarial at-

tacks, inference privacy, edge computing, cloud computing.

I. INTRODUCTION
In recent years, deep learning has achieved remarkable

success in a variety of domains, such as computer vision, audio
processing, natural language processing, etc [1], [2]. Deep
neural network (DNN) is empirical and data-driven, and the
performance is highly dependent on its scale and complexity.
As a result, an increasing number of users outsource DNN
training by using machine learning as a service (MLaaS) [3]
or even directly reuse pre-trained DNNs from the online
cloud repositories (e.g., Caffe Model Zoo [4] and BigML [5]).
Despite the benefits of cloud-based deep learning, it presents
significant privacy issues when shifting the entire DNN and
inference computation to the cloud [6]. Although researchers
have made a great effort to protect users’ sensitive data, most
of them focus on privacy issues in the training phase [7]–[14].
In terms of the inference phase, researchers [15]–[22]

have tried to leverage homomorphic encryption [32] and
secure multi-party computing [33] to guarantee data privacy.
However, these methods incur prohibitive computational and
communication costs, making it difficult to implement them
in complex and large DNNs. Another line of work [23]–[27]

Fig. 1. The high-level idea of GHOST and GHOST+.

employs differential privacy [34], [35] to obfuscate inference
instances with deliberate perturbation. There is a trade-off
between the amount of injected noise and the accuracy of
the inference results. That is, the more the noise added for
higher privacy, the lower the inference accuracy. Nonetheless,
the research in this field is still in its infancy. An open problem
is whether other technologies are available in preserving in-
ference privacy while ensuring high scalability and accuracy?
In this paper, we work on exploring the feasibility of

image steganography [37]–[39] in protecting data privacy in
the inference phase. To this end, we first propose a private
deep learninG solution with Hidden infOrmation based on
STeganography, named GHOST, where sensitive images are
hidden into public images before data transmission. To im-
prove the robustness against latent images, GHOST retrains
the DNN with both the public and stego images, so as to learn
the hidden features of sensitive images. In view of the fact that
most vendors disallow altering their proprietary DNNs, we
further put forward GHOST+, which leverages the generative
adversarial network (GAN) [40] to perturb stego images in a
subtly way, without making any modification to the DNN.
Since sensitive images are invisible and hidden, inference
privacy is preserved in the dark. Moreover, our solutions not
only consume reasonable overheads, enabling high scalability
in large-scale DNNs, but also outperform the state-of-the-art
work in the best cases, allowing for high-accuracy inference.
Intuitively, both solutions take advantage of the vulnerability

of DNNs against adversarial attacks, which mislead DNNs
to produce adversary-selected results by either poisoning the
DNN or crafting adversarial inputs [41]–[43]. By turning this
vulnerability into the weapon for data privacy, our solutions
enable the DNN to misclassify a stego image into the class
of the sensitive image hidden in it with a high probability. To
protect data privacy while achieving a high attack success rate
(ASR), GHOST retrains the DNN into a poisoned network,
but GHOST+ generates adversarial perturbations by GAN.



TABLE I
PRIVATE DEEP LEARNING SOLUTIONS
Inference privacy Training privacy

Intrusive GHOST, ARDEN [23] With SDP and
DPFE [24], CVDNN [27] federate learning [7]–[11],

Non-intrusive GHOST+, MiniONN [22] With LDP and
SHREDDER [26] artificial data [12]–[14]

The solutions based on cryptographic techniques [15]–[21] can be used
to protect both the training and inference privacy intrusively.

The high-level idea of our solutions is illustrated in Fig. 1.
Finally, both solutions adopt the edge-cloud collaborative

framework that partitions a DNN across edge devices and
cloud servers. By outsourcing the large portions of a DNN,
we can achieve a better balance between computation and
communication, while ensuring enhanced privacy [44], [45].
As for application scenarios, GHOST involves the training
process of DNNs and can be employed to protect data privacy
in the MLaaS environment. In contrast, GHOST+ keeps the
DNN intact and is more appropriate to the environment where
users online use pre-trained DNN from cloud repositories.
Our main contributions are summarized as follows:
• To the best of our knowledge, this is the first work that
successfully utilizes image steganography and adversarial
attacks to protect inference privacy in the dark. To explore
the power of steganography in private deep learning, dif-
ferent steganography techniques are used to hide images.

• We propose an intrusive solution, GHOST, and a non-
intrusive solution,GHOST+, both of which not only hide
sensitive images into public images before uploading to
preserve privacy, but also mislead the DNN to output our
expected results for high inference accuracy. Compared
with GHOST, GHOST+ is more practical and flexible
since it incurs only a minor accuracy loss while keeping
the DNN intact, and it can effectively avoid performance
degradation by training a GAN for each sensitive type.

• We provide a formal formulation and show that both
GHOST and GHOST+ can protect data privacy in an in-
visible way. We also empirically validate that it is difficult
for attackers to perceive the existence of sensitive images
even if stego images can be reconstructed by launching
feature inversion attacks [44] and denoising [46].

• We conducted evaluations on four datasets, MNIST [47],
CIFAR-10 [48], GTSRB [49], and SVHN [50]. Exper-
imental results show that our solutions outperform the
state-of-the-art solutions when the number of sensitive
types is within a given range. With these encouraging
results, we confirm that, apart from cryptography and
differential privacy, steganography is a promising tool for
accuracy-aware privacy protection in deep learning.

II. RELATED WORK

With the wide application of DNNs, how to protect privacy
in cloud-based deep learning has drawn a great deal of atten-
tion. Existing methods span different stages of deep learning
from training to inference. The majority of these researches
focused on the privacy issues in the training phase [7]–[14].
According to whether or not a DNN is modified, the private

deep learning methods can be further categorized into intrusive
and non-intrusive types. As shown in Table I, GHOST and
GHOST+ aim to protect inference privacy, by adopting the
intrusive and non-intrusive solutions, respectively.
Cryptographic techniques. Orlandi et al. [15] proposed a

oblivious neural network which encrypted input data with ho-
momorphic encryption. Bost et al. [16] applied homomorphic
encryption to achieve privacy-preserving classification. Dowlin
et al. [17] designed CryptoNets to make encrypted predictions
over encrypted data. Two private machine learning frameworks
ABY3 [18] and SecureNN [19] were proposed by utilizing
secure 3-party computation. To improve efficiency, Falcon [20]
combined ABY3 and SecureNN, while Trident [21] designed a
4-party security protocol with an additional honest party. Liu et
al. [22] designed MiniONN, an oblivious neural network that
supported privacy-preserving predictions without altering the
network. However, either homomorphic encryption or secure
multi-party computation suffers from heavy computational and
communication overheads, and this kind of solutions are too
expensive to be implemented in complex DNNs.
Noise injection. Differential privacy, including local differ-

ential privacy (LDP) and standard differential privacy (SDP),
has been wildly applied to guarantee the privacy of training
data [7]–[13]. Recently, Wang et al. [23] proposed ARDEN, a
private inference solution that employed differential privacy to
perturb the local data. Osia et al. [24] designed a private feature
extraction architecture, DPFE, which reduced the amount of
leaked information by using principal component analysis.
To avoid retraining the DNN, Leroux et al. [25] used an
autoencoder to obfuscate the data before data transmission.
However, the obfuscation was easily reversible. Mireshghallah
et al. [26] proposed SHREDDER that learned the noise distri-
bution non-intrusively. Xiang et al. [27] proposed a complex-
valued network, CVDNN, which concealed the input data into
a randomized phase. The key of noise injection is how to
balance between accuracy and privacy.
Besides the above techniques, a branch of work [28]–[31]

proposed running deep learning algorithms in trusted execution
environments (TEE) [51] to protect data privacy and integrity.
Our work aims to explore the feasibility of steganography in
protecting inference privacy. Although deep learning has been
applied to hide/discover images in steganography, this is the
first work that applies steganography in private deep learning.

III. PRELIMINARY
A. Deep Learning
Deep learning, as a branch of machine learning, makes use

of DNNs to find solutions for a variety of complex tasks. A
DNN fθ = F1 ◦ F1 ◦ . . . ◦ FL consists of a series of layers,
where θ are the parameters, ◦ denotes connection, and each
layer Fi is a transformation function that converts the previous
layer’s output into the current layer’s input. Given an initial
input x, the final output of the DNN can be expressed as
fθ(x) = FL(FL−1(. . . (F2(F1(x))))). In classification tasks,
the DNN takes an m-dimensional vector x ∈ R

m as input and
outputs y ∈ R

M , a probability distribution over theM classes.



Fig. 2. Samples from the LSB substitution system. The 1st column shows
the cover images, the 2nd column shows the hidden images, the 3rd column
shows the stego images with ζ = 2, the 4th column shows the stego images
with ζ = 3, the 5th column shows the differences between cover images and
stego images in the third column, and the 6th column show the differences
between cover images and stego images in the fourth column.

The DNN parameters are learned from a training dataset
Dtrain = {(xi, zi)}Ni that contains a set of inputs xi ∈ R

m

and the corresponding ground-truth labels zi ∈ [1,M ]. The
training process aims to minimize the average difference
between the predictions and the ground-truth labels, which
can be quantified by a loss function defined as follows:

θ = argmin
θ∗

∑N

i
L(fθ∗(xi), zi). (1)

For clarity, L(fθ∗(xi), zi) is simplified as L(f ;xi) somewhere
in this paper. For complex DNNs, the loss function is usu-
ally non-convex. In practice, we minimize the loss function
by using the mini-batch stochastic gradient descent (SGD)
algorithm [52]. Given a batch B of random samples, each
parameter θj ∈ θ can be updated through back-propagation:

θj = θj − α
1

|B|

∑
xi∈B

∇θjL(f ;xi), (2)

where α is the learning rate. The performance of the trained
DNN model is measured using its accuracy on a validation
dataset, Dvalid, which is composed of a set of inputs and
their ground-truth labels, s.t. Dvalid ∩Dtrain = ∅.

B. Image Steganography
Image steganography is a type of covert communication

technique that makes use of the content redundancy in digital
media to conceal secret images [37]. As shown in Fig. 2,
after hiding information, it is hard for observers to detect the
existence of hidden images from stego images. A great number
of hidden methods have been proposed and widely used for
secret data transmission, copyright protection, access control,
an so on. In this work, we mainly investigate the traditional
least significant bit (LSB) substitution [38] and the state-of-
the-art neural network-based steganography (NNS) [39].
(1) LSB. The basic principle of LSB is to hide the secret

information into the least significant bits of the cover image.
The changes in the cover image are unobservable by naked
eyes, since only the lowest bits of pixels are replaced. For color
images, each pixel consists of R, G, and B channels, and each
channel is encoded into 8 bits. The rightmost bit of the pixel
is the least important, which can be replaced without humans
noticing the changes. However, the embedding capacity of
LSB is limited. As the number of changed bits exceeds 4,
the difference between stegos and covers will be dramatic. To
solve this problem, we just hide the most significant bits of

Fig. 3. The model of edge-cloud collaborative framework.

the hidden image instead of a full-size image. Let ζ denote
the number of the least significant bits available. The effect
after LSB substitution is shown in Fig. 2.
(2) NNS. The entire system consists of three networks: a

prep-network, a hiding-network, and a reveal-network, which
are trained at the same time. The prep-network takes a hidden
image as input and transforms it into features that can be
used by the hiding-network. The hiding-network takes a cover
image and the features of hidden image as input, and creates
a stego image that looks as similar as the cover image while
containing enough information of the hidden image. The
reveal-network takes the stego image as input and aims to
recover the hidden image as realistically as possible.
Let C and C′ represent the cover image and the stego image,

and let H and H ′ represent the hidden image and the restored
image, respectively. The whole system is trained through the
following loss function: LNNS = E[|C−C′|]+βE[|H−H ′|],
where β is the weight balancing the importance between the
invisibility and restorability of hidden images. Here, |C −C′|
(resp. |H−H ′|) measures the pixel difference between C and
C′ (resp. H and H ′). The objective of the hiding-network
is to minimize the average difference between cover images
and stego images, and the reveal-network aims to minimize
the average difference between hidden images and restored
images. With such a loss function, the hiding-network learns
where/how to hide images at the end of the training process.
The reason why we investigate these two techniques is that
LSB is very efficient due to its simplicity, and NNS has
excellent capacity in hiding a large amount of information.

IV. MODELS
A. System Model
As shown in Fig. 3, with a cutting point •, the DNN is part-

itioned into two parts: fθ = Eθ • Cθ, where Eθ is deployed
on edge devices and Cθ is hosted by cloud servers. Given an
inference instance, the edge-side network Eθ extracts features
embedded and sends the intermediate value v to the cloud-side
network Cθ, which calculates the final output and gets it back.
DNN partitioning is usually formulated as an optimization

problem. Inspired by the previous work [23], [26], we let
edge devices store a small number of convolutional layers for
feature extraction, while offloading the most layers (including
all fully-connected layers) to the cloud. This edge-cloud col-
laborative framework achieves a better balance between com-
putation and communication. On the one hand, it consumes
less time and energy for edge devices to process a shallow-
layer DNN compared with the whole network. On the other
hand, the pooling/ReLU layers reduce the data elements, and
the size of intermediate values to be transmitted is smaller than
original inputs. It is worth noticing that, this partitioning is also



conducive to privacy protection. As demonstrated in [44], the
deeper the partitioning point, the higher the privacy level.
B. Threat Model
The threat model assumes that the edge devices are fully

trusted, and the cloud is a potential attacker with the knowl-
edge of the entire DNN. For data privacy, the edge devices
locally process the original data and extract general features
before interacting with the cloud. The cloud is assumed to
be interested in inferring useful information from the received
intermediate value other than the inference result. The cloud
would intercept the transferred features and perform feature
inversion attacks in a white-box setting [44] and denoising [46]
to recover the original input from the intermediate value.
To protect data privacy in the inference phase, this work

aims to achieve the following privacy guarantee:
Invisibility. When the cloud tries to reconstruct the original

input from the intermediate value, it can only synthesize
inputs revealing no information about the sensitive images.
In other words, the sensitive image is invisible and hidden
in the synthesized input. We adopt two perceptual metrics,
Peak Signal to Noise Ratio (PSNR) and Structural Similarity
(SSIM) [53], to quantify the invisibility of hidden images.
(1) PSNR is a common tool used to measure the difference

of the pixel points between two images. Given two images
X and Y , the mean square error (MSE) between them is cal-
culated as: MSE = 1

h×w

∑h
i=1

∑w
j=1

(X(i, j)− Y (i, j))
2,

where h and w is the height and width, respectively. Let
MAX2 denote the maximum pixel value. The PSNR be-
tween images X and Y is computed by: PSNR = 10 ×

log10

(
MAX2

MSE

)
, which represents the ratio between the max-

imum power of an image and the power of noise. The larger
the value of PSNR, the more similar the two images will be.
(2) SSIM is an index to measure the similarity between

images. Given two images, X and Y , the luminance, contrast
and structure similarities between two images are measured
by LX,Y =

[
2μXμY +C1

μ2

X
+μ2

Y
+C1

]
, CX,Y =

[
2σXσY +C2

σ2

X
+σ2

X
+C2

]
, and

SX,Y =
[

σXY +C3

σXσY +C3

]
, respectively. Here, μi and σi are

weighted mean and variance of image i for i ∈ {X,Y },
and σXY is covariance of images X and Y . In addition,
C1, C2 and C3 are constants included to avoid instability when
denominators are close to zero. The SSIM between two images
is calculated by SSIM(X,Y ) = La

X,Y ×Cb
X,Y ×Sc

X,Y , where
a, b, c are weights used to adjust the relative importance of
three components. As the value of SSIM gets closer to 1, the
more similar the two images will be.

V. THE INTRUSIVE SOLUTION GHOST
The overview of GHOST is presented in Fig. 4, where

the DNN fθ is divided into the edge-side network Eθ and
the cloud-side network Cθ. Inspired by the work of [23],
the edge-side network Eθ is derived from the shallow layers
of the original DNN fθ , and its structure and weights are
frozen. The cloud-side network Cθ is retrained in the training
phase. In GHOST, the cloud is in charge of training and
inference computation, and edge devices are responsible for

Fig. 4. The framework overview of GHOST.

hiding images and extracting features. For all data transmitted,
it contains only abstract representations of stego images,
protecting sensitive data in the dark. The key components of
GHOST include covert retraining and covert inference.

A. Covert Retraining

To preserve data privacy, sensitive images are first hidden
into public images before feature extraction. As shown in
Section III-B, we can either hide the most significant bits of
the sensitive image by using LSB or adopt NNS to hide the
full-size image. However, this incurs the accuracy sacrifice in
the inference phase. To improve the robustness of the DNN,
we retrain the cloud-side DNN to learn the hidden features of
sensitive information from the representations of stego images.
The retraining process is summarized in Algorithm 1.
In Algorithm 1, the cloud-side network Cθ is retrained on the

representations of a public dataset Dp and a generative dataset
Dg , whereDp contains raw training data andDg is composed
of stego data. Given a cover dataset Dc that contains public
data, and a hidden dataset Dh that contains images of the
same type as the sensitive images, the generative dataset Dg

is constructed as follows: For each sample (Hi, LHi
) ∈ Dh, a

stego image C̃j is generated by hidingHi into the cover image
Cj ∈ Dc, and then a sample (Cj , LHi

) is put into Dg. In this
way, each sample in Dg looks similar as the cover image in
Dc, but has the same label as the hidden image in Dh. The
training loss is defined as follows:

L(C;xr, c̃r) = L(C;xr) + λL(C; c̃r), (3)
where xr, c̃r are representations of samples from Dp and Dg ,
respectively, and λ controls the importance between the losses
of raw training data and generative training data.

B. Covert Inference

Once the training process is finished, the robustness of the
cloud-side DNN against the stego representations is improved.
To obtain the labels of insensitive images, the edge device
directly extracts features from original images, without in-
formation hiding. As for a sensitive image, the edge device
first picks a public image as the cover image, then hides the
sensitive image by using steganography techniques, and finally
extracts and uploads the features of the stego image.



Algorithm 1 Retraining the cloud-side network
Input: A public dataset Dp, a cover dataset Dc a hidden

dataset Dh, an edge-side network Eθ, and a cloud-side
network Cθ

OutPut: A retrained cloud-side network Cθ′

1: Set Dg to an empty set
2: for each sample (Hi, lHi

) in Dh do
3: for each sample (Cj , lCj

) in Dc do
4: Obtain the stego image C̃j by steganography
5: Add (C̃j , lHi

) into Dg

6: Use Eθ to extract features from samples in Dg and Dp

7: Obtain Cθ′ by training Cθ with the loss function of Eq. (3)

On receiving the edge device’s request, the cloud performs
inference computation as normal and returns the final classifi-
cation labels. Given the abstraction representations of stegos,
the cloud may launch feature inversion attacks to recover the
original input. However, as shown in Table III, even if the
cloud is able to completely restore the stego image looking like
the public image, the sensitive image is hidden and invisible.
Comparison with the state-of-the-art solution. Both

GHOST and ARDEN [23] intrusively modify the cloud-side
network Cθ . The basic idea of GHOST is training a poisoned
network Cθ′ , which outputs correct labels for clean instances,
but implements the misclassification whenever a sensitive
image is hidden in the input. On the contrary, ARDEN
trains Cθ with noise that conforms to Laplace distribution,
to enhance the network’s robustness. The main difference is
that the privacy level achieved by ARDEN is determined by
the amount of noise injected, but the privacy of GHOST is
protected by the steganography technique adopted. As shown
in [23], when the amount of noise is minor, sensitive images
will be successfully restored using the convolutional denoising
autoencoder (CDA) [46]. For GHOST, even though only LSB
and NNS are considered, steganography has been well studied
and an abundant powerful methods are available. Moreover,
ARDEN adds noise after feature extraction, and thus can be
combined with GHOST to further enhance privacy.

VI. THE NON-INTRUSIVE SOLUTION GHOST+

Once the cloud-side network is retrained, GHOST allows
users to conceal sensitive images while obtaining desired
results. However, the pre-trained DNN is usually proprietary
and not allowed to be changed. To improve the practicability,
we propose the advanced solution, GHOST+, which can
effectively protect data privacy while keeping the DNN intact.
The overall architecture of GHOST+ is illustrated in Fig. 5,

where the DNN is partitioned across the edge device and
the cloud as GHOST. The main difference is that GHOST+

locally trains a GAN to produce adversarial perturbations
instead of retraining the cloud-side network. Our basic idea
is to leverage the super learning ability of GAN to add
deliberate perturbations into stego images, making the DNN
“misclassify” the perturbed stego images into our expected
classes. It is motivated by the fact that most DNNs consistently

Fig. 5. The framework overview of GHOST+.

misclassify adversarial samples that are formed by applying
small perturbations to original inputs. GHOST+ is a non-
intrusive solution that is mainly consisted of the adversarial
perturbation training and adversarial inference steps.

A. Adversarial Perturbation Training
A GAN consists of a generator and a discriminator, which

learns unknown data distributions through a minmax two-
player game. The objective of the generator is to fool the
discriminator with synthesized images, while the discriminator
aims to distinguish real images from the synthesized one. The
generator implicitly learns the distribution when the process
of the confrontation reaches a dynamic balance.
In GHOST+, we design a GAN that can produce perturba-

tions for stego images such that the pre-trained DNN outputs
the label of the hidden image for the perturbed stego image.
As shown in Fig. 5, the GAN consists of a generator Gω and a
pre-trained network fθ. The generator Gω is based on similar
architecture of image-to-image translation [41], [54], which
takes a stego image C̃ as input and generates a perturbed
image Gω(C̃) + C̃. The pre-trained network fθ is considered
as the discriminator, but will not be updated in the training
process. Given a stego image C̃ that conceals a hidden image
H , the goal of the generator Gω is to produce the adversarial
perturbation Gω(C̃), such that (1) fθ(Gω(C̃)+C̃) = lH , where
lH is the label of the hidden image H ; (2) Gω(C̃) should
be small enough. To achieve this goal, we first design a loss
function Ladv for misleading the pre-trained model fθ:

Ladv = E[L(fθ(Gω(C̃) + C̃), lH)]. (4)

Here, Ladv represents the average distance between the pre-
diction and the expected class. As the work in [41], we also
use the L2 norm to bound the magnitude of the perturbation:

Lpert = E[||Gω(C̃)||2]. (5)

Here, Lpert encourages the perturbed data to appear similar
to the original input. Finally, the total loss is defined as:

Ltotal = λLadv + Lpert, (6)

where λ controls the relative importance of the accuracy of
adversary inferences and the magnitude of perturbation. As the
work of [55], we dynamically adjust parameter λ according to



Algorithm 2 Training the GAN in each batch
Input: A generative dataset Dg , a pre-trained DNN fθ , and

a generator Gω

OutPut: A trained generator Gω′

{Parameters: Batch size |B|, weight λ, learning rate α}
1: d ← 0

2: for each (C̃i, lHi
) in a batch B do

3: generate a perturbed image by C̃′
i ← Gω(C̃i) + C̃i

4: Ladv ← L(fθ(C̃′
i), lHi

)
5: Lpert ← ||Gω(C̃i)||2
6: Dynamic adjust weight λ with Eq. (7)
7: Ltotal ← λLadv + Lpert

8: d ← d+∇ωLtotal

9: ω′ ← ω − α d

|B|

Ladv and Lpert to strike a better balance between two losses.
In our experiments, λ is initialized to 2 and updated by:

λ =

{
1/2, if Lpert > Ladv

2, if Lpert ≤ Ladv

(7)

Algorithm 2 outlines the process of adversarial perturbation
training. In a similar way as GHOST, the edge device first
constructs a generative dataset Dg which is fed to the gen-
erative network for training. Algorithm 2 is designed based
on the SGD algorithm. In each batch, this algorithm generates
perturbed images and feeds them into the pre-trained network
fθ to obtain the loss on perturbed data Ladv. This training
process aims to minimize Ladv and the amount of perturbation
Lpert, and finally calculates the partial derivative of the joint
loss with respect to each parameter in ω. The parameters are
updated by the mean value of derivatives in the batch.

B. Adversarial Inference
Once the GAN is trained, it can generate adversarial per-

turbations efficiently for any inference instance. As shown in
Fig. 5, for insensitive data, the edge device directly extracts
features from original images and sends them to the cloud for
further inference. To obtain the label of a sensitive image, the
edge device first generates a stego image, then perturbs the
stego image with the well-trained GAN, and finally extracts
the general features of the perturbed stego image.
The extracted features are fed to the cloud-side network,

and the final labels are achieved and sent back. In GHOST+,
the whole DNN is kept intact, and thus the cloud is completely
oblivious to the addition of perturbations. Given the features,
the cloud may launch feature inversion attacks to recover the
original input, and then remove noise by using the CDA.
However, as shown in Fig. 9, the restored images look similar
to the cover images, hiding the sensitive images in the dark.
Comparison with the state-of-the-art solution. Both

GHOST+ and SHREDDER [26] add deliberate noise into
inference instances without altering the pre-trained DNN fθ.
The basic idea of GHOST+ is training a GAN to generate
adversarial perturbations, making fθ output the label of the

sensitive image hidden in the perturbed image. In contrast,
SHREDDER trains a network generating optimized noise,
making fθ output the label of the perturbed data. Although
inference instances are obfuscated in both solutions, the rea-
sons for adding noise are different. As GHOST, the privacy of
GHOST+ is guaranteed by steganography, and our goal is to
generate the minimal perturbation to render fθ misbehaving.
The privacy of SHREDDER is measured by the amount of
noise injected, and the goal is to find out the maximum
perturbation for privacy while making fθ behave normally.
As ARDEN, sensitive images in SHREDDER can be revealed
when the amount of injected noise is minor.

VII. PRIVACY MEASUREMENT
Mutual information (MI) has been widely used to quantify

information leakage in steganography systems [37] as well as
to understand the behavior of DNNs [56]. Given two random
variables, X and Y , with a joint distribution p(x, y), the MI
between X and Y is defined as follows:

I[X ;Y ] = KL[p(x, y)||p(x)p(y)]

= −

∫
X

∫
Y

p(x, y)log2(
p(x)p(y)

p(x, y)
)dxdy

= H[X ]−H[X |Y ],

(8)

where KL[p||q] is the Kullback-Liebler divergence of two
distributions p and q, and H[X ] and H[X |Y ] denote the
entropy and conditional entropy of X and Y , respectively.
A. The Privacy of GHOST
In terms of the achieved privacy level, we follow the work

of [26] employing MI to quantify the information leakage
between the original input and the intermediate value sent
to the cloud. Consider a K-partition DNN consisting of L
layers fθ = F1 ◦ F2 ◦ . . . ◦ FL, where the first K layers
Eθ = F1 ◦ . . . ◦FK are deployed on edges, and the remainder
layers Cθ = FK+1 ◦ . . . ◦FL are on the cloud. Let ST be the
steganography method (LSB or NNS) and let X denote the
original input. The privacy of GHOST is defined as:

PK = −I[X ; Eθ(C̃)], (9)
where C̃ = ST (X) is the processed result after steganogra-
phy. From Eq. (9), we know that the lower MI implies the
higher level of privacy. Since Eθ is deterministic and frozen,
Eq. (9) can be transformed into:

PK = −H[Eθ(C̃)] +H[Eθ(C̃)|X ] = −H[Eθ(C̃)]

= −H[FK(FK−1(. . . (F1(ST (X)))))].
(10)

In the above equation, the term H[Eθ(C̃)] controls the amount
of information leaked to the cloud, and we want to minimize
this information. This information can be minimized by the
combined efforts of steganography and feature extraction.
On the one hand, the steganography method generates stego
images looking similar to the cover image while hiding the
sensitive image stealthily. On the other hand, the neural net-
work operations like pooling, ReLU and convolutions modify
the input information, and thus the more the number of layers
deployed locally, the higher privacy yield for a given accuracy.



TABLE II
THE MODEL STRUCTURE AND PARAMETER SETTINGS

Dataset # of images # of classes Input size Model architecture Accuracy [α, |B|, |E|]

MNIST 70,000 10 28× 28× 1 2Conv+2Pooling+2Dense 98.25 [0.001, 256, 20]
CIFAR-10 60,000 10 32× 32× 3 4Conv+2Pooling+4BN+4Dropout+3Dense 87.13 [0.001, 128, 100]
GTSRB 51,839 43 32× 32× 3 6Conv + 3Pooling +4Dropout+2Dense 96.21 [0.001, 128, 50]
SVHN 99,289 10 32× 32× 3 AlexNet [57] 91.79 [5e−4, 128, 50]

Let Pst = −I[X, C̃] denote the privacy level achieved by
steganogpraphy. According to data processing inequality (DPI)
theorem [56], a lower bound on privacy can be derived by:

PK ≥ PK−1 ≥ . . . ≥ P1 ≥ Pst, (11)
where Pi denotes the privacy provided by the i-th layer for
1 ≤ i ≤ K . In other words, the edge-cloud collaborative
framework achieves better privacy protection compared with
steganography alone. At the same time, the deeper the parti-
tioning point, the higher the privacy level. The task of boosting
Pst can be achieved by uniform embedding distribution [37]
and is out of the scope of this paper. To improve the privacy
level of GHOST, our approach is to increase the number of
layers K deployed on edge devices. As shown in Fig. 10, the
attacker’s reconstructive ability decreases as K increases.
B. The Privacy of GHOST+

Consider a K-partition DNN, fθ = Eθ • Cθ . Let X denote
the original input, let C̃ = ST (X) denote the processed
result after steganography, and let Gω(C̃) denote the generated
perturbation. The privacy of GHOST+ is defined as:

P+

K = −I[X ; Eθ(C̃ + Gω(C̃))]. (12)
As Eθ is a deterministic function, we have:
P+

K = −H[Eθ(C̃ + Gω(C̃))] +H[Eθ(C̃ + Gω(C̃))|X ]

= −H[Eθ(C̃ + Gω(C̃))]

= −H[FK(FK−1(. . . (F1(G(ST (X)))))].

(13)

where G(Y ) = Y +Gω(Y ) denotes a function adding noise on
input Y . In the above equation, the term H[Eθ(C̃ + Gω(C̃))]
controls the amount of exposed information, and is supposed
to be minimized. The loss function Lpert defined in Eq. (5)
encourages injecting the minimal noise such that the perturbed
stego image slightly differs from the cover image (conceal-
ing original input in the dark). Let Pst = −I[X, C̃] and
Ppert = −I[X,G(C̃)] denote the privacy level achieved by
steganogpraphy and perturbation, respectively. Again using the
DPI theorem, a lower bound on privacy is derived by:

P+

K ≥ P+

K−1
≥ . . . ≥ P+

1 ≥ Ppert ≥ Pst. (14)
This equation implies that by adding adversarial perturbations,
GHOST+ can reach the privacy level at least as much as
steganography. To improve the privacy level, we adopt the
same solution as GHOST by increasing the value of K .

VIII. EVALUATION
In this section, we implement the proposed solutions,

GHOST and GHOST+, using TensorFlow and evaluate their
effectiveness in terms of performance and privacy. The metric
of performance is tested by the inference accuracy for classifi-
cation tasks, and the level of privacy is measured by the robust-
ness against feature inversion attacks. Besides, the scalability

of our solutions is tested by edge-side execution time. To val-
idate our performance in practice, we compare GHOST with
the intrusive solution, ARDEN [23], and compare GHOST+

with the non-intrusive solution SHREDDER [26]. All four
solutions adopt the edge-cloud collaborative framework for
inference privacy. Unlike our solutions that employ steganog-
raphy, both ARDEN and SHREDDER obfuscate inference
instances with deliberate perturbations to protect data privacy.

A. Experimental Setup
We demonstrate the effectiveness of our solutions on four

widely used image classification datasets: MNIST, CIFAR-10,
GTSRB, and SVHN, where each image is first scaled to [0, 1]
range in a pre-processing stage. The experimental information
for each dataset is shown in Table II. To train the DNN, the
hyperparameters, including the learning rate α, the batch size
|B|, and the number of epoches |E| are configured according
to different benchmarks. To train the generator network in
GHOST+, we use the Adam solver [58] with α = 0.0001.
In terms of the steganography methods, LSB sets the

number of least significant bits to ζ = 3, and NNS is employed
to hide full-size images. While training the NNS system, we
set α = 0.001 and |B| = 32 for all datasets, and set |E| = 20
for MNIST, and |E| = 200 for the remaining datasets.
Edge device specifications. The operations relevant to

hiding images, adversarial perturbation training/injection, and
feature extraction are performed on a laptop, which is equipped
with a NVIDIA GeForce MX250 off-the-shelf GPU running
CUDA V10.2.141 on the MS Windows 10 operating system.
Cloud specifications. The training and inference computa-

tions of DNN are run on a server with an Intel(R) Xeon(R)
Gold 5218 CPU of 2.3GHz and 128GB memory, alongside a
NVIDIA GeForece RTX 3080 GPU running CUDA V11.4.56
on the MS Windows Server 2016 operating system.

B. Performance
For each class, the related images are classified into two

types: sensitive samples and public samples. For each sensitive
image, both GHOST and GHOST+ need to choose a public
image as the cover image and hide it with the steganography
methods (LSB or NNS). According to whether or not there are
sensitive samples associated, the labels can be divided into
sensitive labels and public labels. The number of sensitive
labels ns and the number of public labels nc are two important
parameters affecting the performance of our solutions. Let γ
denote the ratio of ns to nc. To test the influence of these
parameters, we fix the number of layers deployed on edge
devices with K = 3, and evaluate the inference accuracy of
our solutions under the setting of γ = {1 : 9, 2 : 8, 3 : 7, 4 : 6}
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Fig. 6. The results of GHOST and GHOST+ for LSB. GHOST-Clean and GHOST denote the results for public and sensitive samples, respectively.
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Fig. 7. The results of GHOST and GHOST+ for NNS. GHOST-Clean and GHOST denote the results for public and sensitive samples, respectively.

MNIST CIFAR-10
0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

LSB(1:9)
LSB(2:8)
NNS(1:9)
NNS(2:8)
BASELINE

(a) GHOST vs. ARDEN.
MNIST CIFAR-10

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

LSB(1:9)
LSB(2:8)
NNS(1:9)
NNS(2:8)
BASELINE

(b) GHOST+ vs. SHREDDER.
Fig. 8. Comparison results of inference accuracy for sensitive samples.

GHOST. Since the DNN is retrained in GHOST, we test
the inference accuracy on the fine-tuned DNN for both the
public samples and the sensitive samples. Fig. 6-Fig. 7 show
the accuracy with varying ratio γ and steganography methods
for different benchmarks. Among all benchmarks, GHOST
performs the best and incurs a minor accuracy loss with incre-
mental γ in MNIST that is simple in format and structure. For
the remaining benchmarks, the inference accuracy of sensitive
samples decreases as the ratio γ increases. However, the ratio γ
has minor impact on the inference accuracy of public samples.
Furthermore, NNS supports hiding full-size images and lets
the stego image contain superabundant information of the
hidden image. Therefore, NNS performs better than LSB with
limited embedding capacity. The main problem with NNS is
that it consumes more edge-side execution time than LSB for
constructing the generative dataset Dg .
GHOST+. Since the DNN is pre-trained, the accuracy

of GHOST+ for public samples is the same as shown in
Table II. The results relevant to sensitive samples are also
displayed in Fig. 6-Fig. 7. As GHOST, the ratio γ has a
negative impact on the inference accuracy of GHOST+, and
NNS has higher accuracy than LSB. Compared with GHOST,
GHOST+ requires a little extra costs on edge devices for
training the generator network Gω . For example, it costs about
5min and 20min to train Gω (with γ = 1 : 9) for MNIST
and CIFAR-10, respectively. However, once Gω is trained, the
execution time for producing perturbations is negligible. In
general, GHOST+ is more practical than GHOST since it
incurs only minor accuracy loss while keeping the DNN intact.

Fig. 9. The visualized results of invisibility on MNIST and CIFAR-10.

Performance comparison. From the experiment results,
we have a surprising observation that our inference accuracy
is even higher than that of the pre-trained accuracy shown
in Table II. The reason for such exciting results is that the
accuracy in our solutions, in a sense, can be regarded as the
ASR of adversarial attacks. The retraining process of GHOST
resembles the process of training a poisoned network, and
GHOST+ simulates the generation of GAN-based adversar-
ial samples. Our goal is to mislead the DNN to produce
our expected result with a high ASR. Compared with the
expensive cryptographic techniques [32], [33], our solutions
incur much less overheads and have high scalability. To show
their effectiveness, we compare GHOST (resp. GHOST+)
with ARDEN (resp. SHREDDER) on two datasets, MNIST
and CIFAR-10, under different privacy budges. From Fig. 8,
we know that both solutions outperform the state-of-the-art
solutions as the ratio γ is small. However, as the value of γ
increases, our solutions become less competitive. The main
reason is that the greater value of γ means the larger amounts
of hidden features. For GHOST, it requires a larger-scale
neural network of better learning and discrimination power,
and for GHOST+, it requires training a stronger generator
to generate adversarial perturbations for a variety of sensi-
tive types. It is worth noting that an alternative solution for
GHOST+ is to train a generator for each sensitive type with
a low ratio γ. However, the larger the scale of neural networks
(resp. the more the number of generators), the more cost
required for training and inference. Our future work will try
to offer an attractive trade-off between performance and cost.

C. Privacy
To empirically evaluate the privacy guaranteed by our

solutions, we first use PSNR and SSIM to measure the



TABLE III
THE INVISIBILITY OF HIDDEN IMAGES

Dataset LSB (PNSR/SSIM) NNS(PNSR/SSIM)
Ave Max Min Ave Max Min

MNIST 39/0.99 44/0.99 37/0.99 36/0.99 39/0.99 32/0.99
CIFAR-10 41/0.99 49/0.99 33/0.98 36/0.99 39/0.99 31/0.95
GTSRB 37/0.99 40/0.99 35/0.93 33/0.98 36/0.99 30/0.95
SVHN 43/0.99 49/0.99 36/0.99 36/0.99 40/0.99 34/0.98
The difference between images is invisible to naked eyes when PNSR is
larger than 30 and SSIM is close to 1.

invisibility of hidden images, and then show the robustness
of our solutions against feature inversion attacks.
Invisibility. To exhibit the invisibility, we fixed the number

of layers deployed on edge devices with K = 3. We first
consider a powerful attacker that can completely reconstruct
the perturbed stego images of GHOST+ using write-box
feature inversion attacks. Fig. 9 visualizes the restored images
(after removing noise from perturbed stego images using the
CDA) based on the MNIST and CIFAR-10 datasets. From this
figure, we know that the restored image either looks like the
cover image (hiding the sensitive image in secret) or looks
very blurry and cannot reveal any useful information about
the sensitive image. Then, we consider a stronger attacker
that is powerful enough to recover the stego images, by
first reconstructing the perturbed stego images using feature
inversion attacks, and then restoring the stego images by the
CDA. Table III shows the average (Ave), maximum (Max), and
minimal (Min) PSNR/SSIM values between cover images and
stego images based on four benchmarks. From the quantitative
results, we know that it is hard for the observer to detect the
difference between cover images and stego images. Therefore,
our solutions can protect data privacy in the dark.
The effect of feature inversion attacks. Compared with the

black-box setting, white-box feature inversion attacks assume
that the attacker has the knowledge of the edge-side network
Eθ . Given the intermediate value v output by Eθ , the attacker
aims to recover an input x0 that satisfies the following require-
ments: (1) Eθ(x0) is similar to Eθ(x), where x is the original
input; (2) x0 follows the same distribution as other inference
samples. The goal is equivalent to minimizing the Euclidean
distance between Eθ(x0) and Eθ(x), while minimizing the
total variation of generated images. This can be formalized as
an optimization problem, and can be solved by the regularized
maximum likelihood estimation method.
To exhibit the impact of K , we consider two datasets

MNIST and CIFAR-10, and launch feature inversion attacks on
GHOST, where LSB is used to hide images. Fig. 10 visualizes
images reconstructed by feature inversion attacks with varying
K . From this figure, we know that the attacker’s reconstructive
ability degrades as the value of K increases. Furthermore,
GHOST achieves better privacy than applying steganography
alone. For example, for LSB, the sensitive images are visually
observable by directly extracting the last ζ = 3 bits from
the stego images, but as K increases to 3, (i.e., the pool1
layers and conv12 layers are deployed locally for MNIST and
CIFAR-10, respectively), the reconstructed images are very
vague, from which it is hard to extract useful information of

(a) MNIST. (b) CIFAR-10.
Fig. 10. The effect of feature inversion attacks. The 1st row shows the
sensitive images, the 2nd row shows the stego images, the 3rd row shows
the reconstructive images when K = 3, the 4th row shows the reconstructive
images when K = 5, the 5th row shows the restored images by drawing the
last ζ = 3 bits from stego images, and the 6th row shows the restored images
by drawing the last ζ = 3 bits from the reconstructive images (K = 3).

sensitive images. In GHOST+, the attacker needs to eliminate
noise in addition, and thus it is more difficult for the attacker
to restore sensitive images. As for NNS, the reveal-network is
secret and only known to legal receivers, and the difficulty of
restoring sensitive images increases. Therefore, our solutions
can effectively resist feature inversion attacks.

IX. CONCLUSION
This paper aims to explore the power of image steganog-

raphy in protecting data privacy of deep learning. To this
end, we propose two private inference solutions, GHOST and
GHOST+, both of which employ the traditional LSB and
recent NNS techniques to hide sensitive images. To make the
DNN output the label of the sensitive image hidden in a stego
image, GHOST retrains a poisoned network and GHOST+

generates adversarial inputs, both turning the vulnerability
of DNNs against adversarial attacks into a breakthrough for
protecting data privacy. Experiment results demonstrate that
our solutions can preserve data privacy while guaranteeing a
high inference accuracy by creatively integrating steganogra-
phy and the nature of DNNs. As part of our future work,
we will further explore the power of steganography in private
deep learning and try to implement our solutions in other
domains, such as voice and text, in addition to the vision
domain.The authors have provided public access to their code
at https://zenodo.org/record/5832391#.YdvYLIgzbid.
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